

Visible Transmission Test Report

Using the HUNTER CQ-XE

3	•	
Analyzed for: VISTAMATIC	Work Order # 15905	Measurement Date 8/15/2014
		Test Report Date 8/19/2014

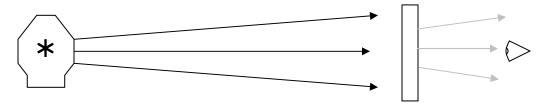
Sample Information

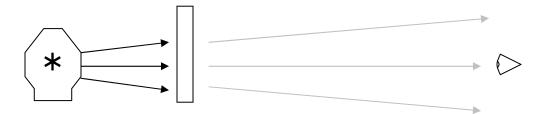
Sample :	Sample Description:		
1	Aluminum blind window	'Between Glass Blinds	A Side to source – Rel. Trans.
			B Side to source – Total Trans.
2	White Vinyl	VW Vistamatic Vision panel	A Side to source – Rel. Trans.
			B Side to source – Total Trans.
3	Black Vinyl	VB Vistamatic Vision panel	A Side to source – Rel. Trans.
			B Side to source – Total Trans.
4	Sandblasted	VS Vistamatic Vision panel	A Side to source – Rel. Trans.
		· · ·	B Side to source – Total Trans.
	See Appendix photographs		

Transmission Results

Number of Specimens Analyzed: Four, each scanned at 5 locations; measurements 400 - 700 nm on each sample.

	Visible Light Transmission Results :		Average (T _i)	Standard Deviation:
1	All 5 locations T < 0.9% , 4 locations < 0.25%	Relative	0.26%	.31
	One location (with holes) had the higher transmise Average Transmissions wit		0.15% 0.06%	
	All 5 locations T < 2.1%, 4 locations < 0.13%	Total	0.44%	.82
2	All 5 locations T < 8.6%	Relative	5.5%	1.57
	All 5 locations T <0.16%	Total	0.11%	.03
3	All 5 locations T < 0.11%	Relative	0.014%	.02
	All 5 locations T <0.07%	Total	0.01%	.02
4	All 5 locations T < 77%	Relative	58.9%	5.1
	All 5 locations T <12%	Total	10.9%	0.72


Measurement process: The spectrophotometer was warmed-up for a minimum of 30 min. The apparatus was then standardized for the specific mode of operation, Relative Transmission, or Total Trransmission. Each sample was set into the spectrophotometer and scanned according to the standard procedure.


Website: www.solarlight.com E-mail: info@solarlight.com

The measurements have been performed in order the demonstrate the light transmission properties in two ways, *Relative, and Total.*

The **Relative** transmission is approximately the visible light transmission that will be provided when the observer is close to the sample and the source is more distant.

The *Total* transmission is approximately the visible light transmission that will be provided when the source is close to the sample and the observer is more distant.

Review of Results

These samples of combined glass / shade materials provide different levels of transmission of visible light. The Black vinyl transmits only a very small amount of light. The Aluminum blind 'Between Glass Blinds' sample had a low light transmission, although, light can leer through the holes in the blinds, shifting upward the average when that location is included.

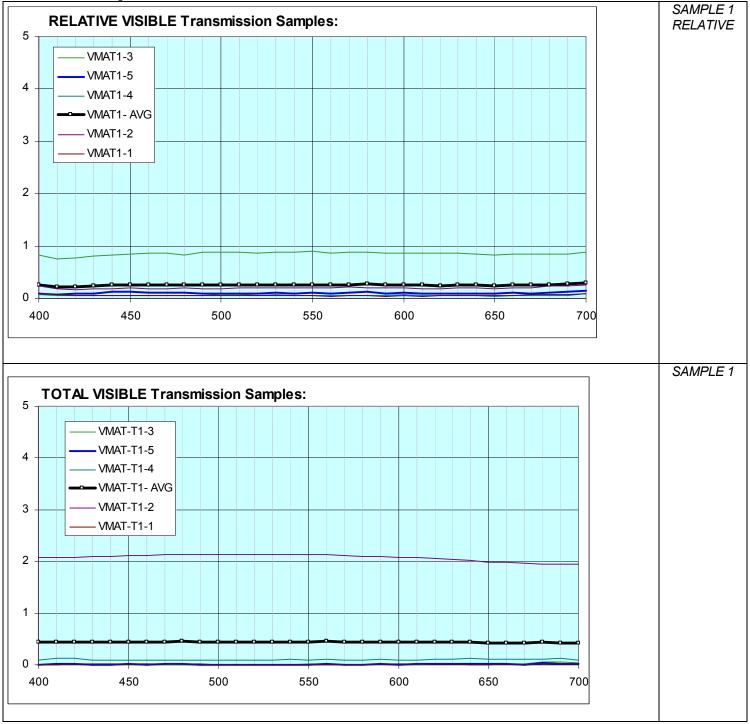
The White vinyl sample has a low **total** transmission, however, in relative mode, there is a significant light transmission (≈5%).

The Sandblasted sample has a dramatically high transmission in Relative mode, and significant, but lower transmission in total mode.

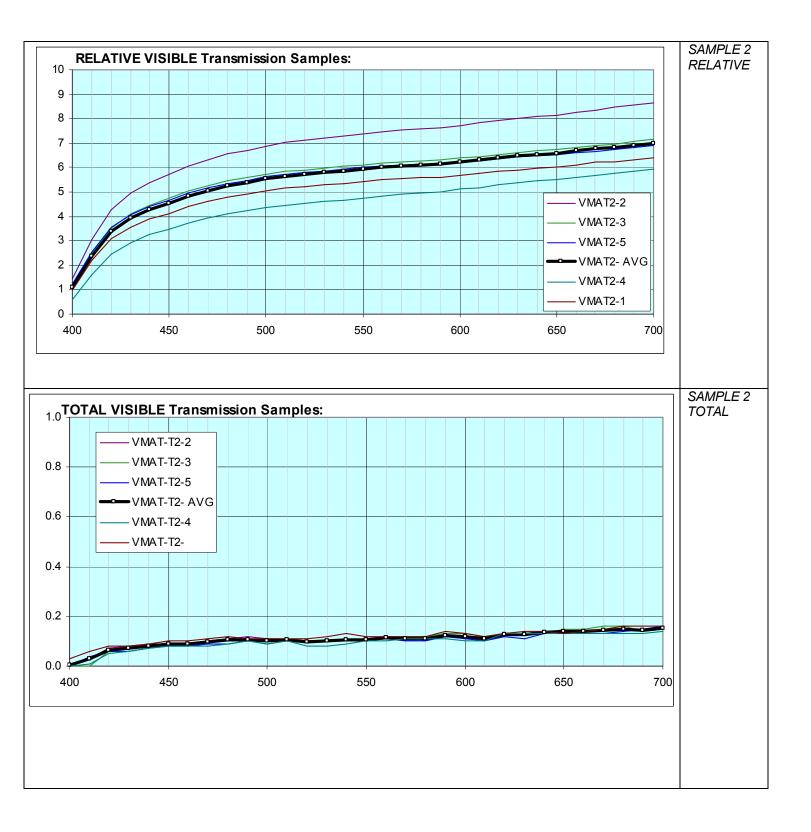
Avg. w/o outlier

Summary of Relative Transmission Averages

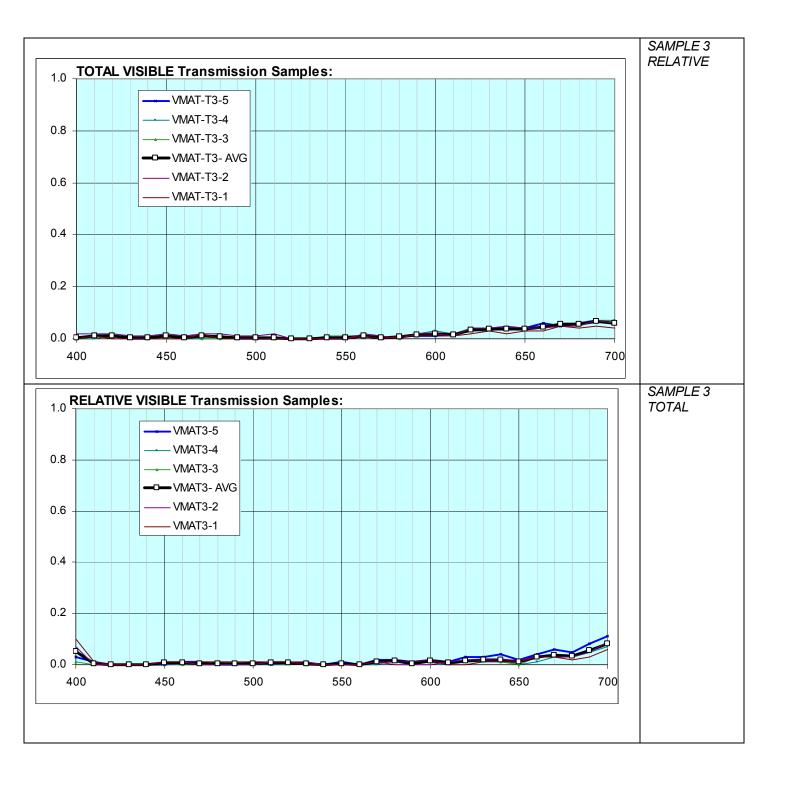
Between Glass Blinds	0.255	0.145
White Vinyl	5.537	
Black Vinyl	0.014	
Sandblasted	58.941	


Summary of TotalTransmission Averages

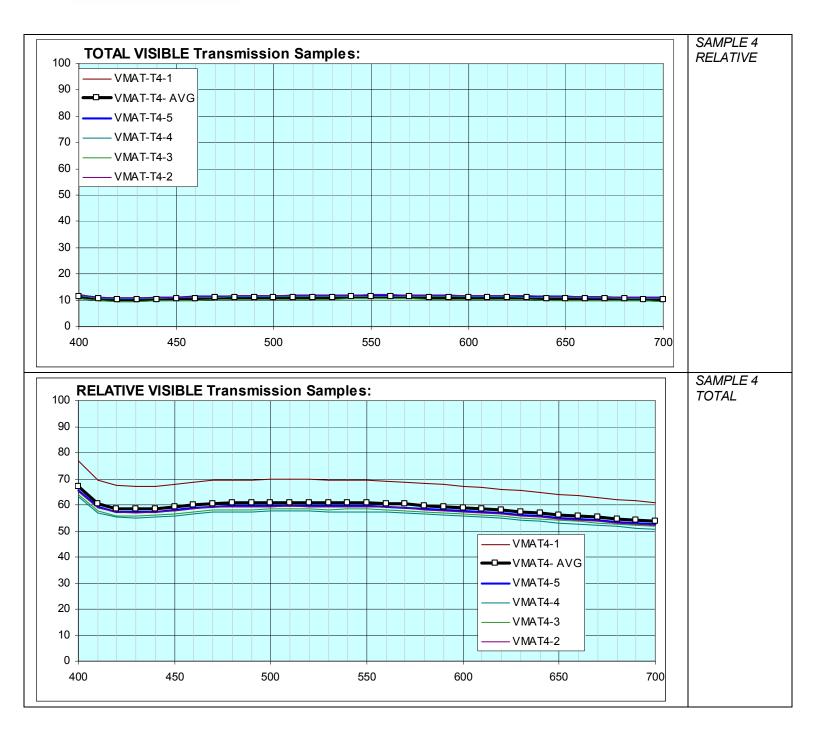
Between Glass Blinds	0.441	0.060	Avg. w/o outlier
White Vinyl	0.106		
Black Vinyl	0.018		
Sandblasted	10.873		


Website: www.solarlight.com E-mail: info@solarlight.com

Spectral Charts



Website: www.solarlight.com E-mail: info@solarlight.com

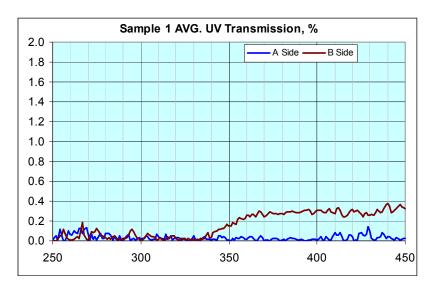


Website: www.solarlight.com E-mail: info@solarlight.com

Ultraviolet Transmission Test Report

Using the LabSphere UV-1000F

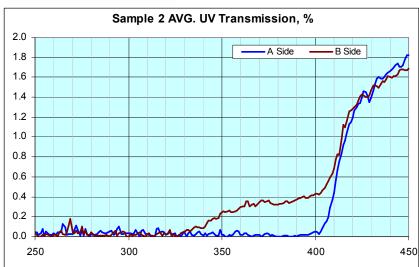
V			
Analyzed for: VISTAMA	ΓΙϹ	Work Order # 15905	Measurement Date 8/15/2014
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Test Report Date 8/18/2014

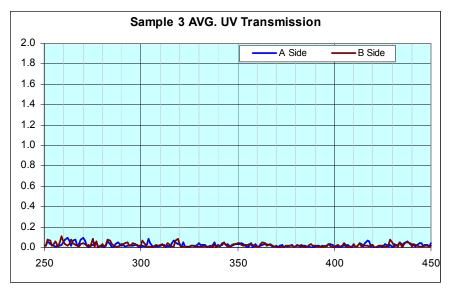

Sample Information

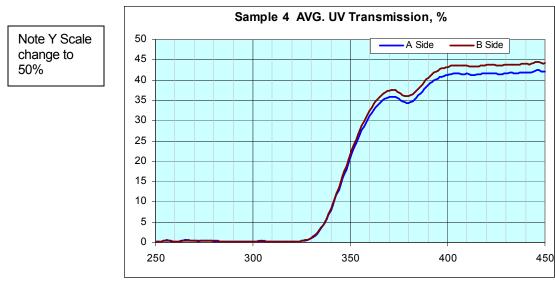
Sample :	Sample Description:		
1	Aluminum blind window	A Side	'Between Glass Blinds
		B Side	
2	White Vinyl	A Side	VW Vistamatic Vision panel
		B Side	
3	Black Vinyl	A Side	VB Vistamatic Vision panel
		B Side	
4	Sandblasted	A Side	VS Vistamatic Vision panel
		B Side	
	See Appendix photographs		

Transmission Results

Number of Specimens Analyzed: Four, each side scanned at 4 locations; measurements 250 – 450 nm on each sample.


Sample	Side	Results :	Average (ABS(T _i))	Standard Deviation:
1	Α	All 4 locations T < 0.3%	0.3%	.049
	В	3 of 4 locations T< 0.2% one leaked light at ≈ 0.5%	0.16%	.291
2	Α	In UV T < 0.1% Vis 1 – 2%	0.31%	.127
	В	In UV T < 0.1% Vis 1 – 2% one loc. leaked light at ≈ 0.3%	0.41%	.242
3	Α	All locations T < 0.1%	0.02%	.048
	В	All locations T < 0.1%	0.02%	.043
4	Α	Significant UVA Trans. >10% at 342 nm, and >40% in VIs	20%	1.8
	В	Significant UVA Trans. >10% at 342 nm, and >40% in VIs	22%	1.45





Website: www.solarlight.com E-mail: info@solarlight.com

Rev 2.0

Review of Results

These samples of combined glass / shade materials provide different levels of protection against solar ultraviolet radiation (UVR).

Samples 1, 2 and 3 provide a high degree of UV blocking; the presence of individual sample light leaking for one location each in samples 1 and 3 is likely an artifact of the thickness of the test samples.

Sample 2, White vinyl (VW) did demonstrate transmission of visible light (>400 nm) for all locations, although, only to a level of 1 - 2%.

Sample 3, Black Vinyl (VB) provided excellecnt blocking of UV and the short wave visible.

Sample 4 did not provide UV blocking above a wavelength of 330 nm, and its visible transmission was approximately 50%

The results in this report are applicable to the sample tested and may not apply to other batches of the same material or similar materials. It is a condition of the provision of these test results that you do not use the name of the Test Lab, Solar Light, or any words, marks or devices which may imply a connection with Solar Light, in connection with the promotion or sale of your products, unless Solar Light has given express written authority to do so. This test report may only be reproduced in full and without alteration.

Work Order#	
Date of measurement	
Engineer	Drew Hmiel
Measurement System	UV-1000F
Laboratory Conditions	
Temperature	27.5°C
Humidity	30.1 %

Statistical Uncertainties

Total Measurement Uncertainty:

Coverage Factor (99% confidence):

The maximum instrumental contribution to the uncertainty in the transmittance values T(%) used to calculate the results is 0.3 at the 99% confidence level.

Website: www.solarlight.com E-mail: info@solarlight.com

APPENDIX

Website: www.solarlight.com E-mail: info@solarlight.com

